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We report luminescence measurements of the intracenter transition
3Ty — 345 of the V3t (3d?) charge state in semi-insulating GaAs under
hydrostatic pressure up to 0.8 GPa at liquid helium temperature. The hy-
drostatic pressure coefficient of the zero-phonon line is found to be equal to
6.9 + 0.2 meV/GPa. This result enables us to determine the Huang-Rhys
parameter, which characterizes the coupling to the symmetric mode of vibra-
tion, as S4 = 1.4 £ 0.1. Using this parameter, computer simulation leading
to a reconstruction of the shape of both luminescence and corresponding
absorption spectra were performed.

PACS numbers: 71.55.Eq, 78.55.Cr

1. Introduction

Optical absorption and luminescence bands in GaAs at 0.74 eV correspond-
ing to 34, « 3T}, transitions of the V3+(3d?) charge state crystals have been
investigated for many years (see for example review articles [1, 2]). The results
of several experiments were analysed in terms of a dynamical Jahn-Teller effect
with the e-mode existing in the excited 3T, state [3-7]. The obtained values of
the Huang-Rhys parameter Sg = Ejr/hwg (where Ejr is the Jahn—Teller energy
and hwg — the phonon energy) vary between 3.4 and 4. It was also shown [8]
that in order to explain the total shape of luminescence and absorption bands,
an interaction with the symmetric a-mode of vibrations should also be taken into
account. :

The lack of any effect of hydrostatic pressure up to 1 GPa on the transport
properties of p-type GaAs:V [9] suggests a minor influence of the a-mode on the
ground 3 A, state (degenerate with the GaAs valence band). The parameter Sy
describing the interaction of the a-mode with the excited T3 state can be thus
obtained by a moment analysis of the luminescence or absorption bands [8] or from
the hydrostatic pressure coefficient of one of these bands. This pressure coefficient
is known from a uniaxial stress experiment [3], but with a significant experimental
ErTor.
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This paper presents hydrostatic pressure measurements of the vanadium lu-
minescence band which gave a much more accurate value of the pressure coefficient
and, subsequently the S4 parameter. This result and the e-mode Jahn—Teller data
from literature make it possible to reproduce the shape of both luminescence and
absorption spectra

2. Experimental

Vanadium doped, semi-insulating GaAs crystals were prepared by the lig-
uid encapsulated Czochralski (LEC) technique with a vanadium concentration of
7+8x10% ¢cm~2 [10]. Zero pressure luminescence was measured in a CF1204 (Ox-
ford) cryostat. For pressure investigations samples were placed in a high pressure
optical cell with benzine as the transmitting medium. The cell with a sample was
mounted in the exchange helium gas cryostat and cooled to low temperatures. Hy-
drostatic pressure up to 0.8 GPa was measured with a calibrated InSb manometer.
Photoluminescence (PL) was excited by the 488 nm line of an Ar ion laser with
power density around 1 W/cm?. PL was analysed with a SPEX 500M monochro-
mator equipped with a North Coast Optics Ge photodiode or cooled PbS detector
(Hamamatsu).

3. Results and discussion

A typical low-temperature (4 K) atmospheric pressure photoluminescence
spectrum related to the 373 — 3A, transition is shown in Fig. 1. It consists
of a strong zero-phonon line (ZPL) A with accompanying hot line B (see inset)
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Fig. 1. Luminescence (a) and absorption (b) bands corresponding to Az «— *T3 tran-
sitions of the V¥ (3d?) charge state in GaAs at about 4 K (solid lines). Theoretical Pois-
son shapes (star lines} were calculated for the parameters Sg = 3.9, hwgr = 8.1 meV;
Sa=1.4, hwg = 31.5 meV. Inset — luminescence zero-phonon lines A and B.
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Fig. 2. Shift of the luminescence zero-phonon line A under hydrostatic pressure at
about 4 K (10 K for 0.62 GPa). Inset — a linear fit to the experimental data with a
pressure coefficient equal to 6.9 £ 0.2 meV/GPa.

followed by phonon replicas. The energy shift of the A line with increasing pressure
is presented in Fig. 2. With the exception of the measurements at 0.62 GPa, all
photoluminescence data were collected at about 4 K. The low intensity shoulders
of the main line are due to axial stresses induced on the GaAs surface by frozen
benzene. The measured positions of line A were plotted versus the stress value.
A straight line fit to the data gave the hydrostatic pressure coefficient of the
ZPL being equal to 6.9 + 0.2 meV/GPa. From this value it is easy to calculate
the symmetric vibration energy E4 = 43 & 3 meV. Taking the phonon energy
hiws = 31.5 meV from the experimental spectra one obtains the Huang-Rhys
parameter being equal to Sy = Eq/hws =1.4£0.1.

Computer simulation taking into account optical transitions involving two
phonons (hwg and Aw ) with the e-mode Jahn-Teller effect at the T4 state known
from other experiments [3-7] and the obtained value of the S4 parameter lead to
a reconstruction of the shape of both luminescence and absorption bands (see

Fig. 1).
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